Pengertian Dan Rumus Persamaan Garis Lurus Serta Pola Soal Persamaan Garis Lurus Dan Pembahasannya
Berikut ini ialah pembahasan lengkap perihal Persamaan Garis Lurus yang mencakup Pengertian Persamaan Garis, Pengertian Persamaan Garis lurus, Menggambar Garis Lurus Pada Bidang Kartesius, persamaan garis lurus, rumus persamaan garis, contoh soal persamaan garis lurus, rumus persamaan garis lurus, rumus persamaan garis tegak lurus.
Dalam melaksanakan sebuah pendakian, para pendaki niscaya akan melewati banyak sekali jenis jalanan. Adakalanya mereka menemui jalan yang lurus, terjal dan berkelok-kelok. Tidak jarang mereka pun menghadapi jalan yang curam dan menanjak dengan kemiringan tertentu.
Garis-garis yang saling tegak lurus ini untuk selanjutnya disebut sebagai sumbu koordinat. Letak sebuah titik pada sistem koordinat kartesius ditentukan oleh pasangan absis x dan ordinat y.
Penyelesaian:
H = (3, 4) ; E = (7, -2) ; R = (-4, -4) ; U = (-5, 3)
Dalam permasalahan tersebut, persamaan f(x) = 2x + 1 sanggup kita ubah menjadi persamaan y = 2x + 1.
Dalam grafik terlihat bahwa grafik fungsinya berupa garis lurus, mengapa demikian? Persamaan y = 2x + 1 disebut persamaan garis lurus atau persamaan garis. Secara umum bentuk persamaan garis ialah sebagai berikut.
a. 3x + 4y = 12
b. 4x – 2y – 6 = 0
Penyelesaian:
a. 3x + 4y = 12
==> 4y = –3x + 12
==> y = –¾x + 3
b. 4x – 2y – 6 = 0
==> –2y = –4x + 6
==> y = 2x - 3
Perhatikan contoh berikut.
Penyelesaian:
Persamaan garis y = 2x + 2 akan melewati titik (0, 2) dan (2, 6).
Misalkan persamaan garis pada gambar di samping ialah y = mx + c. Kita sanggup memilih nilai m dan c alasannya ialah terdapat dua buah titik yang dilewati oleh persamaan garis tersebut, yaitu titik (0,0) dan (2, 5).
Kedua titik tersebut kemudian disubstitusikan ke dalam persamaan y = mx + c sehingga diperoleh hasil sebagai berikut.
(0, 0) 0 = m(0) + c
c = 0
(2, 5) 5 = m(2) + c
5 = 2m + 0
m = 5/2
Jadi, persamaan garis pada gambar tersebut ialah y = (5/2)x.
Penyelesaian:
a = 4, dan b = 5. Persamaan garisnya ialah y = (5/4)x
Dalam kasus khusus, persamaan garis lurus yang sejajar dengan sumbu X mempunyai bentuk y = c. Sedangkan persamaan garis yang sejajar sumbu Y mempunyai bentuk x = c, dimana c ialah konstanta.
Baca juga: Cara Menentukan Persamaan Garis Lurus Sumber https://www.berpendidikan.com
Dalam melaksanakan sebuah pendakian, para pendaki niscaya akan melewati banyak sekali jenis jalanan. Adakalanya mereka menemui jalan yang lurus, terjal dan berkelok-kelok. Tidak jarang mereka pun menghadapi jalan yang curam dan menanjak dengan kemiringan tertentu.
Persamaan Garis Lurus
Pada ketika duduk di dingklik sekolah dasar, kalian pernah mempelajari sistem koordinat kartesius, bukan? Coba kalian ingat-ingat kembali. Persamaan garis yang akan kita bahas kali ini juga disajikan dalam sistem koordinat kartesius.1. Sistem Koordinat Kartesius
Untuk memilih letak suatu benda yang berada di ruangan tertentu kita memakai sebuah koordinat. Pada koordinat kartesius terdapat dua buah garis yang menjadi pola dalam memilih posisi atau letak suatu titik. Kedua garis ini saling tegak lurus dan berpotongan di titik sentra (0,0).Garis-garis yang saling tegak lurus ini untuk selanjutnya disebut sebagai sumbu koordinat. Letak sebuah titik pada sistem koordinat kartesius ditentukan oleh pasangan absis x dan ordinat y.
Contoh Soal dan Pembahasannya
Tentukanlah letak titik H, E, R, dan U pada sistem koordinat berikut!Penyelesaian:
H = (3, 4) ; E = (7, -2) ; R = (-4, -4) ; U = (-5, 3)
2. Pengertian Persamaan Garis
Jika diketahui sebuah pemetaan f(x) = 2x + 1 dengan tempat asal 0 < x < 5 dengan x Î R, maka kalian sanggup menggambarkan grafik fungsinya ibarat gambar di bawah ini.Dalam permasalahan tersebut, persamaan f(x) = 2x + 1 sanggup kita ubah menjadi persamaan y = 2x + 1.
Dalam grafik terlihat bahwa grafik fungsinya berupa garis lurus, mengapa demikian? Persamaan y = 2x + 1 disebut persamaan garis lurus atau persamaan garis. Secara umum bentuk persamaan garis ialah sebagai berikut.
px + qy = r dimana p ≠ 0 dan q ≠ 0Jika masing masing ruas dari persamaan px + qy = r kita bagi dengan q maka akan diperoleh persamaan garis berikut.
y = -(p/q)x + r/qBilangan di depan variabel x, yaitu –p/q merupakan sebuah konstanta sehingga sanggup kita ubah menjadi konstanta lain contohnya m, dan r/q sanggup kita ganti dengan c. Untuk selanjutnya kita peroleh persamaan garis yang gres sebagai berikut.
y = mx + c, dengan m dan c ialah sebuah konstanta.
Contoh Soal dan Pembahasannya
Nyatakan persamaan garis berikut ke dalam bentuk y = mx + c!a. 3x + 4y = 12
b. 4x – 2y – 6 = 0
Penyelesaian:
a. 3x + 4y = 12
==> 4y = –3x + 12
==> y = –¾x + 3
b. 4x – 2y – 6 = 0
==> –2y = –4x + 6
==> y = 2x - 3
3. Menggambar Garis Lurus Pada Bidang Kartesius
Untuk menggambar sebuah garis kalian cukup memilih dua buah titik yang memenuhi persamaan garis yang diberikan. Untuk menggambar garis dengan persamaan y = mx + c, langkah-langkahnya ialah sebagai berikut.- Tentukan dua buah titik yang memenuhi persamaan y = mx + c dengan cara memasukkan nilai x pada persamaannya
- Tarik garis lurus pada kedua titik tersebut
Perhatikan contoh berikut.
Contoh Soal dan Pembahasannya
Gambarkan grafik persamaan garis y = 2x + 2!Penyelesaian:
Persamaan garis y = 2x + 2 akan melewati titik (0, 2) dan (2, 6).
Dari contoh di atas sanggup dibuktikan bahwa hanya dengan dua buah titik kita sanggup menggambar sebuah garis.
4. Menentukan Persamaan Garis yang Digambar Pada Bidang Kartesius
Tahukah kalian bagaimana memilih persamaan garis apabila diketahui gambarnya pada bidang kartesius? Perhatikan gambar persaman garis di bawah ini!Misalkan persamaan garis pada gambar di samping ialah y = mx + c. Kita sanggup memilih nilai m dan c alasannya ialah terdapat dua buah titik yang dilewati oleh persamaan garis tersebut, yaitu titik (0,0) dan (2, 5).
Kedua titik tersebut kemudian disubstitusikan ke dalam persamaan y = mx + c sehingga diperoleh hasil sebagai berikut.
(0, 0) 0 = m(0) + c
c = 0
(2, 5) 5 = m(2) + c
5 = 2m + 0
m = 5/2
Jadi, persamaan garis pada gambar tersebut ialah y = (5/2)x.
Dari permasalahan tersebut sanggup ditarik kesimpulan bahwa persamaan garis yang melalui titik sentra (0,0) dan titik (a, b) dengan a ≠ 0 ialah y = (b/a)x.
Contoh Soal dan Pembahasannya
Tentukan persamaan garis dari gambar di bawah ini!Penyelesaian:
a = 4, dan b = 5. Persamaan garisnya ialah y = (5/4)x
Dalam kasus khusus, persamaan garis lurus yang sejajar dengan sumbu X mempunyai bentuk y = c. Sedangkan persamaan garis yang sejajar sumbu Y mempunyai bentuk x = c, dimana c ialah konstanta.
Demikian pembahasan lengkap perihal persamaan garis lurus yang meliputi Pengertian dan Rumus Persamaan Garis Lurus serta Contoh Soal Persamaan Garis Lurus dan Pembahasannya.
Baca juga: Cara Menentukan Persamaan Garis Lurus
Post a Comment for "Pengertian Dan Rumus Persamaan Garis Lurus Serta Pola Soal Persamaan Garis Lurus Dan Pembahasannya"